ThaI $(S t r a s s e n ' 73)$ Let $d>0$ be an integer coprime to $\operatorname{char}(\mathbb{F})$. (it char $(k)=0$ Let C be a multi-output algebraic drecult in X_{1}, \cdots, X_{n} that outputs $x_{1}^{d}, \cdots, x_{n}^{d}$. The the size $(\#$ gates $)$ of C is $\Omega(n \cdot \log d)$.
Cor Let $f=\sum_{i=1}^{n} X_{i}^{d} Y_{i} \in \mathbb{F}\left[X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right]$. Then any crocus computing f has sine $\Omega(n \log d)$.
Bf: Suppose f is computed by a chcuct of she e S.
Then $\frac{\partial f}{\partial Y_{1}}=X_{1}^{d}, \cdots, \frac{\partial f}{\partial Y_{n}}=X_{n}^{d}$ are Simultareorisly computed by a clraint of size $s^{\prime}=O(s)$ by the Bawr-Strassen Theorem (Lecture 3). By Thu 1, $s^{\prime}=\Omega(n \log d)$. So $s=\Omega(n \log d)$

1 This is the best known explicit lower bound for general algebraic chats!
To prove Thu, we need some algebraic geometry.
First, a circuit over \mathbb{F} is also a chroult over \mathbb{K} if \mathbb{H} is on extensten theld of \mathbb{F}. So by replacing \mathbb{F} with its algetorale close F, we may assure F is algehratally dosed (ie it a is a root of nonzero $f(x) \in \mathbb{F}[x]$ then $a \in \mathbb{F}$.).
We ass ume \mathbb{F} is algebraically closed from now on. $(e . g, \mathbb{F}=\mathbb{C}$.)
An (affine) variety $V \subseteq \mathbb{F}^{n}$ is the set of all common solutions of a set of polynomials in $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$.
Egg. $\quad x_{1}^{2}+x_{2}^{2}=1$
$\left(x_{1} x_{2}=0 \quad \frac{1}{(0,0)}\right.$
(Illusuntion in \mathbb{R}^{2})

A variety V is iweducible it $V \neq \phi$ and V cannot be written as the union

A variety V is iweducible it $V \neq \phi$ and V cannot be witt en as the union of two smaller varieties.
Fact: Every varlety V can be uniquely written as a union of limeduable varlettes that are maxual with respect to inclusion.
These iredullder vorcetles of are called the ireducble components of V

The dimension of an inducible variety V is the "degree of freedom" of picking a point in V. (not gibing the formal definition), denoted by dim V.
More generally, the dwenson of a nonempty variety $V=\max _{V^{\prime} \text { seed }} d \mathrm{~m}^{\prime} V^{\prime}$. component of v
\because din of triste sets $=0$.
$\because S$ dim of a lime louse $=1$.
$i S$ dim of a plare/surface
$=2$.
The degree of an ireduclble variety $V \subseteq \mathbb{F}^{h}$ is

$$
\operatorname{deg} V:=|V \cap w|
$$

where $W \subseteq \mathbb{F}^{n}$ is an afftue subspace of codim $\operatorname{din} V$ (ie .dim $W=n-\operatorname{dim} V$) in "general position", Can re made rigorous)
More generally, we define $\operatorname{deg} V:=\sum_{\substack{V^{\prime} \text { ivied } \\ \text { compact of } V}} \operatorname{deg} V^{\prime}$ for (posisily reducible)
(Rework: In the reducible case, the def imition $\mid V \cap W)$ only counts the degree of the irreducible components of V of the topdmension cue. $\operatorname{dim} V$). which is smaller thar Edeg V^{\prime} if the isred con points have mixed dimensions.
So we use the definition $\Sigma \operatorname{deg} V^{\prime}$, which is better suited as a complexity measure.
Fact: for a funteset $S \subseteq \mathbb{F}^{n}$ as a variety, $\operatorname{deg} S=|S|$.

Fact: for a funteset $S \subseteq \mathbb{F}^{n}$ as a variety, $\operatorname{deg} S=|S|$.
Fact: Let $V(f) \leq \mathbb{F}^{n}$ be the set of common roots of a degree-d nonzero poly nounal $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. Then $\operatorname{deg}(v(t)) \leq d$ and $\operatorname{dmm}(v(f))$

$$
\operatorname{deg}(v(f))=d \text { if } f \text { is square free. }
$$

Thu. (Bézout's inequality). Let $V, W \subseteq \mathbb{F}^{n}$ be varieties. Then

$$
\operatorname{deg}(V \cap w) \leq \operatorname{deg} v \cdot \operatorname{deg} w .
$$

The above version is due to Schnour '79 and Heinz' 79.
Remark: when the intersection is "transverse", and when we count points with multiplicities and count those "at infinity",

$$
\chi \ll \text { mate } \boldsymbol{p}^{2} \text { dy }=2 \text {. }
$$

// parallel limes intersect at infinter
then Bézout is mequality is actually an equality, also known us Bézout's Theorem.
However, even ignoring these subtleties, the inequality still holds. E.g., two plane curves C_{1}, C_{2} of degree 2 in general position sates fees $\operatorname{dog}\left(C_{1} \cap C_{2}\right)=4$.
But $\operatorname{deg}\left(C_{1} \cap C_{2}\right)=\operatorname{deg}\left(C_{1}\right)=2 \leq 4$ if $C_{1}=C_{2}$.
Proof of The 1 Suppose C computes $X_{1}^{d}, \ldots, X_{n}^{d}$ smultaneady.
For every uon-inpput gate, assodate a new variable.
Then we get X_{1}, \cdots, X_{m} where $m=$ gates.
together with the polynomials $X_{i j}=1, k_{j \leq n}$
together whth the polynomials $X_{i j}=1,1 \leq j \leq n$ where $X_{-1}, \cdots, X_{i_{n}}$ are assoclated w wh the n output gates
Let $V(S) \subseteq \mathbb{F}^{m}$ be the varety defined by S.
By Bézout's mequaloty, $\operatorname{deg}(V(s)) \leq 2^{\text {size }(C)}$.
Let $w \in F=\mathbb{F}$ be a primitive d-th voot of uncty, i.e. d 's the smallest postive integer such that $w^{d}=1$.
Then for every $C=\left(e_{1}, \cdots, e_{n}\right) \in\{0, \cdots, d-1\}^{n}$, there's a unique Solution to S with $x_{1}=\omega^{e_{1}}, \ldots, x_{n}=w^{e_{n}}$.
these detemmes other X_{i} 's wa $X_{i}=X_{i_{1}}+X_{i 2}$
moreder, theoutputs are $\left(x_{1}^{d}, \cdots, x_{n}^{d}\right)=(1, \cdots, 1)$
These are the ouly pohts in $V(S)$ due to $X_{1}^{d}=\ldots=X_{n}^{d}=1$.
So $\operatorname{din} V(s)=0$ and $\operatorname{deg} U(s)=|V(s)|=d^{n}$.
So we have $d^{n}=\operatorname{deg} V(S) \leq 2^{\operatorname{size}(c)} \Rightarrow \operatorname{size}(c)=d(n \log d)$. I $]$
Remark: The proof actually shows \#multyplication gates $\geqslant n \cdot \log _{2} d$.
Smolersk y' 96 gave an elementory proof of Thm1.
Another application:
(Schwortz-Z:ppel Lemma, aka DeMillo-Lipton-Schwartz-ZLprel Lemma). suppose $f \in \mathbb{F}\left[X_{1}, \ldots, x_{n}\right]$ and $\operatorname{deg}(f)=d$. Let $t \subseteq \mathbb{F}$ be a fulte set. Then

$$
\operatorname{Pr}_{a_{n_{u}} s^{n}}[f(a)=0] \leqslant \frac{d}{|s|}
$$

Lemma Let $V \subseteq \mathbb{F}^{h}$ be a varlety of dimensen k. Let $f_{1}, \cdots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be nouzers polynowlals such that $\operatorname{deg}\left(f_{1}\right) \geqslant \ldots \geqslant \operatorname{deg}\left(f_{m}\right)$.

Then $\operatorname{deg}\left(V \cap v\left(f_{1}\right) \cap \ldots \cap v\left(f_{m}\right)\right) \leq \operatorname{deg}(v) \cdot \prod_{i=1}^{\min \left(m_{1} k\right)} \operatorname{deg}\left(f_{i}\right)$.
Pf: We need the following fact in algelracke geometry:
Fact: If f does not vanish on V and V is iredueble, then $\operatorname{dim}(v \cap v(f)) \leq \operatorname{dim}(v)-1$. (In fact, equality hods if $v \cap v(f) \neq \phi)$
The lemma is proved by induction on $\operatorname{dim} V$,
Base case: $\operatorname{dim} V=0$ or $V=\phi$. Easy to verify.
Induction: By de captesiunto inced components, we may assur V is ineludible.
If $V\left(f_{1}\right) \geq v$. We may skep f_{1}.
So assur $V\left(f_{1}\right) \not \subset V$. Then $\operatorname{din}\left(V \cap V\left(f_{1}\right)\right) \leq \operatorname{dim}(V)-1$ and $\operatorname{deg}\left(v \cap \cup\left(f_{1}\right)\right) \leq \operatorname{deg} V \cdot \operatorname{deg}(v(t))$. by Be pout's Theorem. $\leq \operatorname{deg} v \operatorname{deg}\left(f_{1}\right)$
By the indexation hypothesis on $V^{\prime}:=v \cap v\left(f_{1}\right)$

$$
\begin{aligned}
& \operatorname{deg}\left(v \cap v\left(f_{1}\right) \cap \ldots \cap\left(f_{m}\right)\right)=\operatorname{deg}\left(v^{\prime} \cap v\left(f_{2}\right) \cap \cdots \cap v\left(f_{m}\right)\right) \\
& \left.\leq \operatorname{deg} V^{\prime} \cdot \prod_{i=1}^{m_{i}\left\{\prod_{1}, k-k-1\right\}} \operatorname{deg}\left(f_{i+1}\right) \leq \operatorname{deg} V \cdot \prod_{i=1}^{m, i}\left\{\prod_{1}, k\right\}\right\}\left(f_{i}\right)
\end{aligned}
$$

Proof of Schworty-zuppel: We kuav deg $(v(f))=d$ and $\operatorname{dim}(v(f))=n-1$.

$$
\text { Let } f_{i}=\prod_{a \in S}\left(X_{1}-a\right) \text { for } i=1, \cdots, n \text {. }
$$

Then $\operatorname{deg}\left(t_{0}\right)=|S|$.
Let $V=V(f) \cap V\left(f_{1}\right) \cap \cdots \cap \vee\left(f_{n}\right)$.
Then $\operatorname{dog}(v) \leq d \cdot|s|^{n-1}$ by the above lemma.
And $V=\left\{a \in g^{n}: f(a)=0\right\}$. As V is finite, $|V|=\log (V)$.
So $\operatorname{Pr}_{a n_{u} s^{s^{\infty}}}\left[f(a)^{-0}\right]=\frac{|v|}{\left|s^{n}\right|} \leq \frac{d \cdot|s|^{n-1}}{|s|^{n}}=\frac{d}{|s|}$.

