12. Strassen's Lower Bound, Bézout's Inequality Thursday, September 28, 2023 10:31 PM

ı

Fact : for a face set
$$S \subseteq F^{n}$$
 as a variety, $deg S = 151$.
Fact : for a face set $S \subseteq F^{n}$ be the set of common roots of a degree of anzeno
poly nowal $f \in H[X_{1},..,X_{n}]$. Then $deg(V(H)) \leq d$ and $dm(V(H))$
 $= m-1$.
 $deg(V(H)) = d$ if f is operated.
Then (f) is one quality). Let $V, W \subseteq F^{n}$ be converted.
The above version is due to Schnoor '19 and Heintz' 19.
Remork: When the intersection is "transverg", and when we count prints
with multiplicities and count there at infinity"
 $K \leq multiplicities and count there at infinity"
 $K \leq multiplicities and count there is infinity of the first of the first of the second prints
with multiplicities and count there is uponted the schemet
 $for when us B \in zook's Theorem .$
However, even ignoring these subtlettes, the hequality still holds.
 $For very none (unves C, C_2 of degree 2 in general position
 $satisfies dig(C_1 \cap C_2) = 2deg(C_1) = 2def 4$ if $C_1 = C_2$.
Proof of the 1. Suppose C computes $X_{1,...,X_{n}}^{n}$ is multiplicities when $m = type a$
 $X_{1,...,X_{n}} \times S = mean degree a the form $X_{1,...,X_{n}}$ is a second with a constant
 $K = X_{1,...,X_{n} + K_{1,...,X_{n}} \times S = x_{1,...,X_{n}} \times S = x_{1,...,$$$$$

together with the physicalite
$$X_{ij} = 1$$
, $(ij \in n)$
where $X_{ij}, ..., X_{ijk}$ are associated with the in output going
Let $V(S) \subseteq F^{hi}$ be the variety defined by S.
By Bézarit's inequality, $deg(V(S)) \leq 2^{stac(C)}$.
Let $W \in F^{-} F$ be a primitive d -th varie of writing, i.e. d is the smalless positive
integer such that $u^{-d_{ij}}$.
Then for every $C \circ (e_{i}, ..., e_{n}) \in \{0, ..., d_{ij}\}^{h_{ij}}$, there is a variance
solution to S with $X_{i} = ce^{e_{ij}}, ..., X_{in} = ce^{e_{in}}$.
These one the only plots in $V(S)$ due to $X_{i}^{i} = ... = X_{i}^{i,j} = ...$.
So dim $V(S)$: o and $deg(V(S) = IV(S) I = d^{in}$.
So we have $d^{in} = degV(S) \leq 2^{stac(C)} \Longrightarrow$ size $(C) = d(in (G, d), I)$
Remork : The proof actually shows the multiplicatin gates $\ge in (e_{ij}, d)$.
Surverse of gave an elementary proof of Then I.
Another applicatin :
(schwortz - 2:ppel Lemma, also. DeMillo-Lipton - Schwartz - 2:pped Lemma).
Suppresent for $V(S_{ij}) = d = \frac{d}{151}$.
Lemma Lee $V \subseteq F^{in}$ be a variety of dimentar k . Lee $f_{ij} = if G \in F^{in}$.
Then also $V(f_{ij}) \cap \dots \cap V(f_{in})$ $V(f_{ij}) \cap \dots \cap V(f_{in})$ $J = deg(V)$.
Then also $V(f_{ij}) \cap \dots \cap V(f_{in})$ $J = deg(V_{ij})$.

Then
$$deg(V | V(t_1) \cap \dots \cap V(t_m)) \leq deg(v) \cdot \prod deg(t_1)$$

 $Pf: We need the following fort in algebraic generators:
Text: If f does not worked on V and V is involved ble,
there dru (V | V(t_1)) \leq dru (v) - 1. (2n fort, equility holds $\notin V | V(t_1) \neq \phi$)
The lemma is proved by induction on dim V.
Nowe (a.g. : dim V = 0 or V = β . Easy to varify.
Toduction: By decorptizine inved (corporates we may assue V is involved ble.
If $V(t_1) \geq V$. We may skip f_1 .
So assue $V(t_1) \notin V$. Then the $(V | V(t_1)) \leq dim(v) - f$
ond $deg(V | V(t_1)) \leq deg(v, deg(v(f_1))$
by be zoort's Theorem. $\leq deg(v, deg(v, f_1))$
 $g(v \cap v(t_1) \cap \dots v(t_m)) = deg(v' \cap V(t_1) \cdots \cap v(t_m))$
 $\leq deg(v' \cap V(t_1) \cdots \cap v(t_m)) = deg(v' \cap V(t_1) \cdots \cap v(t_m))$
 $\leq deg(v' \cap V(t_1) \cdots \cap v(t_m)) = deg(v' \cap V(t_1)) = nt$.
Let $f:= \prod_{v \in S} (X_{v-a_v})$ for $l = l_v \cdots h$.
Then deg(V) $\leq d \cdot |S|^{n-1}$ by the above lemma.
And $v = \frac{1}{4} a \in S^n : f(\alpha) = 0^3$. As v is finite, $|V| = deg(V)$.
So $P_1(f_1(\alpha)^{-1}) = \frac{|V|}{|S|^n} \leq \frac{d(1)!^{n-1}}{d(1)!} = \frac{d}{|S|^n}$.
 \Box .$